首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101679篇
  免费   6984篇
  国内免费   4506篇
电工技术   3060篇
技术理论   5篇
综合类   8357篇
化学工业   13086篇
金属工艺   19963篇
机械仪表   5265篇
建筑科学   17568篇
矿业工程   2506篇
能源动力   1895篇
轻工业   3062篇
水利工程   1188篇
石油天然气   5324篇
武器工业   560篇
无线电   2694篇
一般工业技术   9134篇
冶金工业   15464篇
原子能技术   827篇
自动化技术   3211篇
  2024年   99篇
  2023年   906篇
  2022年   1986篇
  2021年   2573篇
  2020年   2565篇
  2019年   1883篇
  2018年   1788篇
  2017年   2656篇
  2016年   2810篇
  2015年   3130篇
  2014年   6193篇
  2013年   5365篇
  2012年   7258篇
  2011年   7551篇
  2010年   5941篇
  2009年   6390篇
  2008年   5619篇
  2007年   7592篇
  2006年   7347篇
  2005年   5806篇
  2004年   4259篇
  2003年   4080篇
  2002年   3291篇
  2001年   2795篇
  2000年   2567篇
  1999年   2061篇
  1998年   1603篇
  1997年   1378篇
  1996年   1150篇
  1995年   897篇
  1994年   784篇
  1993年   567篇
  1992年   487篇
  1991年   359篇
  1990年   283篇
  1989年   226篇
  1988年   189篇
  1987年   127篇
  1986年   97篇
  1985年   110篇
  1984年   78篇
  1983年   51篇
  1982年   56篇
  1981年   37篇
  1980年   73篇
  1979年   23篇
  1978年   22篇
  1977年   14篇
  1975年   14篇
  1959年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
In the context of the high-level radioactive waste disposal CIGEO, the corrosion rate due to microbially influenced corrosion (MIC) has to be evaluated. In France, it is envisaged to dispose of high- and intermediate-level long-lived radioactive waste at a depth of 500 m in a deep geological disposal, drilled in the Callovo-Oxfordian claystone (Cox) formation. To do so, a carbon steel casing will be inserted inside disposal cells, which are horizontal tunnels drilled in the Cox. A specific cement grout will be injected between the carbon steel casing and the claystone. A study was conducted to evaluate the possibility of MIC on carbon steel in the foreseeable high radioactive waste disposal. The corrosiveness of various environments was investigated at 50°C and 80°C with or without microorganisms enriched from samples of Andra's underground research laboratory. The monitoring of corrosion during the experiments was ensured using gravimetric method and real-time corrosion monitoring using sensors based on the measurements of the electrical resistance. The corrosion data were completed with microbiological analyses including cultural and molecular characterizations.  相似文献   
12.
Deep geological repositories for radioactive waste contain metallic materials, either used to construct disposal canisters or as low-/intermediate-level waste (L/ILW). The safety relevance of corrosion is linked to canister lifetime in the former case and gas generation in the latter. More specifically, the Belgian “supercontainer” concept envisages mild steel for the used fuel disposal canister, and in the case of the Swiss L/ILW repository, mild steels are the largest metallic waste component due to the decommissioning of civilian power-generating facilities. For these circumstances, the corrosion environment is dominated by the chemistry of cement, which is used as buffer or backfill material. The corrosion behaviour of mild steel in anoxic environments was studied through the analysis of the hydrogen end-product. Hydrogen analysis was conducted by periodically purging the cell head-space and analysing the gas using a solid-state hydrogen sensor. While this method is limited to providing only uniform corrosion rates averaged over periods of time, ranging from weeks to months, it provides excellent resolution and sensitivity. The test cell environments were matched against the anticipated Belgian high-level waste and Swiss L/ILW repository environments, and also against experiments that have been conducted by other researchers for comparative purposes. Samples were exposed to synthetic cement pore waters, representing fresh and degraded cement. In young cement waters, the formation of initial corrosion products resulted in steel wire corrosion rates of the order of µm/year, which, at 80°C rapidly declined to ∼10 nm/year. In contrast, SA516 grade 70 steel plate corroded much more slowly under similar conditions. In aged cement waters, initial corrosion rates were higher but declined faster towards a longer-term rate of ∼10 nm/year. 316L stainless steel, embedded in cementitious material, corroded at a rate of <1 nm/year at 50°C.  相似文献   
13.
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas, electrochemically pre-charged, and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables, such as the applied current density, the electrolyte composition, and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens, the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms, from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents, to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.  相似文献   
14.
The substitution of coal blending with sawdust had been widely investigated for metallurgical coke production. In this paper, the physiochemical structures of the semicoke derived from sawdust/coals blends co-coking were characterized by several analytical techniques including FTIR-ATR, XPS, NMR, OM, and SEM. Meanwhile, the influence of the sawdust on the physicochemical properties of the sawdust/coals blends were also investigated. Results indicated that partial substitution of coal blending with sawdust benefited from the formation of colloid and optical anisotropy due to the positive synergetic effect, whereas high proportion of sawdust (>10 wt%) inhibited the agglomeration of semi-coke. On the other hand, the semicoke consisted primarily of aromatic carbons replaced by the oxygen linked to carbons and aliphatic carbons when the coal blending was replaced by high proportion of sawdust, causing a less polyaromatic graphite-like structure formation in the semicoke.  相似文献   
15.
《Ceramics International》2022,48(17):24346-24354
The borided layer was prepared on the surface of the Ti–5Mo–5V–8Cr–3Al alloy by powder-pack boriding at 1000°C-10h. SEM, EPMA and TEM were used to investigate the effects of alloying elements (Al, V, Mo and Cr) on the growth of TiB whiskers in the borided Ti–5Mo–5V–8Cr–3Al alloy. Wear properties of borided Ti–5Mo–5V–8Cr–3Al alloy were investigated using dry reciprocating friction tests. SEM results show that the thickness of boride layer in Ti–5Mo–5V–8Cr–3Al alloy is thinner than that in the Cp-Ti. This is attributed to the enrichment of alloying elements especially V in TiB/substrate by TEM, which hinders the diffusion of B atoms, thus resulting in the short and thick TiB whiskers in Ti–5Mo–5V–8Cr–3Al alloy. Borided Ti–5Mo–5V–8Cr–3Al alloy has the better wear resistance than as-received alloy.  相似文献   
16.
The effect of ammonia (NH3) contained in hydrogen (H2) gas on hydrogen environment embrittlement (HEE) of SCM440 low-alloy steel was studied in association with the NH3 concentration, loading rate, and gas pressure. NH3 worked as both mitigator of the HEE and inducer of hydrogen embrittlement (HE) depending on the testing conditions. The mitigation of the HEE was achieved by the deactivation of the iron (Fe) surface for H2 dissociation caused by the preferential adsorption of NH3 on the Fe surface, which is enhanced by the increase in the NH3 concentration and decrease in the H2 gas pressure. NH3 induced HE was caused due to creating hydrogen by the NH3 decomposition. Since the NH3 decomposition rate is low, the induction effect was observed when the loading rate was low. The effect of NH3 was determined by the competition of the mitigation and induction effects.  相似文献   
17.
A conducting and anticorrosive coating is crucial for the application of metal bipolar plates (BP) in proton exchange membrane fuel cell (PEMFC). In this work, a Ti3C2Tx (T)-carbon black (C)-acrylic epoxy (AE) coating is prepared on 304 stainless steel (SS) with enhanced corrosion resistance and conductivity. The corrosion resistance of the T-C-AE coating is investigated in a 0.5 M H2SO4 solution as compared to the AE, T, and T-AE coatings. The T-C-AE coated 304SS exhibits the strongest corrosion resistance with the most positive corrosion potential and the lowest corrosion current density of 0.00673 μA cm?2 in all the samples, while retaining intact and compact surface morphology with the lowest metal ion dissolution even after immersed for 720 h. The addition of Ti3C2Tx and carbon black into the AE matrix greatly decreases interfacial contact resistance (ICR), and the T-C-AE coating achieves a low ICR of 15.5 mΩ cm?2 under 140 N cm?2 compaction force. The excellent anticorrosion performance is mainly attributed to the physical barrier and the cathodic protection provided by the stacked Ti3C2Tx (MXene) nanosheets in the T-C-AE coating. This eco-friendly, conducting, and anticorrosive T-C-AE coating has a good application prospect on SS BP of PEMFC.  相似文献   
18.
《Ceramics International》2022,48(4):5091-5099
The impact of the addition of TiO2 nanoparticles and nanowires on the morphology, phase characteristics, contact angle, and electrochemical performance of chemically bonded phosphate ceramic coatings (CBPCs) was investigated. The chemical composition and surface morphology of the TiO2 nanoparticle and nanowire modified with and without (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane were characterized. Results indicated that the hydrophobic –CF2– and –CF3 groups were successfully introduced into the TiO2 nanoparticles and nanowires after modification. Corrosion resistance of CBPCs with TiO2 was evidently improved compared with that without TiO2. Such improvement was mainly due to the combined effects of low surface energy materials and micro/nano structures. In addition, CBPCs with TiO2 nanowires exhibited higher hydrophobicity and corrosion resistance than those with TiO2 nanoparticles because of the special columnar structure of the nanowires.  相似文献   
19.
In this work, a practical numerical model with few parameters was proposed for the prediction of environmental hydrogen embrittlement. The proposed method adopts hydrogen enhanced plasticity-based mechanism in a fracture strain model to describe hydrogen embrittlement. Fracture toughness degradation of three commercial steels SA372J70, AISI4130 and X80 in high pressure hydrogen environment were investigated. Firstly, governing equations for hydrogen distribution and material damage evolution was established. Hydrogen enhanced localized flow softening effect was coupled within fracture strain dependency on stress triaxiality. Then, the numerical implementation and identification process of model parameters was described. Model parameters of the investigated steels were determined based on experiment results from literatures. Finally, with the calibrated model, fracture toughness reduction of the steels was predicted in a wide range of hydrogen pressure. The prediction results were compared with experimental results. Reasonable accuracy was reached. The proposed method is an attempt to reach balance between physical accurate prediction and engineering practicality. It is promising to provide a simplified numerical tool for the design and fit for service evaluation of hydrogen storage vessels.  相似文献   
20.
The influence of cementite spheroidization on the impact toughness and electrochemical properties of a high-carbon steel has been thoroughly investigated in this study. Heavy warm rolling, followed by 2 h of annealing, has resulted in near-complete spheroidization, leading to a microstructure consisting of nano-cementite globules dispersed in the ultrafine-grained ferritic matrix. The Charpy impact test exhibited superior impact toughness with increased spheroidization. It is validated by the presence of abundant dimples in the fractographs of spheroidized specimens, in contrast to the as-received one that experienced a brittle failure due to its lamellar pearlitic structure. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) carried out in a 3.5% NaCl solution revealed that the corrosion resistance of the alloy gets improved with the increase in the degree of spheroidization. This is attributed to the lower susceptibility of the spheroidized specimen to microgalvanic corrosion owing to the minimum area of contact between nano-spheroidized cementite and ferrite, as elucidated with the help of EIS results aided by equivalent electrical circuit model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号